Sampling and Interpolation on Some Nilpotent Lie Groups

نویسندگان

  • VIGNON OUSSA
  • V. OUSSA
چکیده

Let N be a non-commutative, simply connected, connected, two-step nilpotent Lie group with Lie algebra n such that n = a⊕ b⊕ z, [a, b] ⊆ z, the algebras a, b, z are abelian, a = R-span {X1, X2, · · · , Xd} , and b = R-span {Y1, Y2, · · · , Yd} . Also, we assume that det [[Xi, Yj ]]1≤i,j≤d is a non-vanishing homogeneous polynomial in the unknowns Z1, · · · , Zn−2d where {Z1, · · · , Zn−2d} is a basis for the center of the Lie algebra. Using well-known facts from time-frequency analysis, we provide some precise sufficient conditions for the existence of sampling spaces with the interpolation property, with respect to some discrete subset of N . The result obtained in this work can be seen as a direct application of time-frequency analysis to the theory of nilpotent Lie groups. Several explicit examples are computed. This work is a generalization of recent results obtained for the Heisenberg group by Currey, and Mayeli in [3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

A simple proof of the existence of sampling spaces with the interpolation property on the Heisenberg group

A surprisingly short geometric proof of the existence of sampling spaces with the interpolation property on the Heisenberg Lie group is given. This result was originally proved by of B. Currey and A. Mayeli [3]. In the loving memory of my father Dr. Germain Oussa. Let N be a locally compact group, and let Γ be a discrete subset of N. Let H be a leftinvariant closed subspace of L (N) consisting ...

متن کامل

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

Stepwise Square Integrable Representations: the Concept and Some Consequences

There are some new developments on Plancherel formula and growth of matrix coefficients for unitary representations of nilpotent Lie groups. These have several consequences for the geometry of weakly symmetric spaces and analysis on parabolic subgroups of real semisimple Lie groups, and to (infinite dimensional) locally nilpotent Lie groups. Many of these consequences are still under developmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013